Proton induced coupling reactions in dinuclear σ-alkynyl $-\mu-$ methylene-rhodium complexes

Aurora Castro, Peter M. Maitlis *, Michael L. Turner *, Brian E. Mann, Harry Adams
Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, UK

Received 30 May 2002; accepted 23 September 2002
Dedicated to Professor Pascual Royo on the occasion of his 65 th birthday

Abstract

Addition of two equivalents of HBF_{4} to suspensions of the di-alkynyl-di- μ-methylene-dirhodium complexes $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mu-\right.$ $\left.\left.\mathrm{CH}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\right]\left(\mathbf{2}, \mathrm{R}=\mathrm{Ph} ; \mathbf{3}, \mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ (prepared from the chloro-complex $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mu-\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{2}\right](\mathbf{1})$, and $\left.\mathrm{RC}_{2} \mathrm{MgCl}\right)$, gave the unexpected products syn- and anti-[(C5 $\left.\mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mu-\eta^{5}, \eta^{5^{\prime}}-\left\{\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CC}\left(\mathrm{CH}_{2}\right) \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{X}\right\}\right]\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{4}, \mathrm{X}=\mathrm{H}$; and 5, $\mathrm{X}=p-\mathrm{Me})$. The solid-state structure of $\operatorname{syn} \mathbf{- 5}$, determined by single crystal X-ray diffraction, was shown to contain a hydrocarbon skeleton of two linked η^{5}-allylbenzenes. Complexes $\mathbf{4}$ and $\mathbf{5}$ underwent a dynamic process in solution; this was examined by VTNMR spectroscopy for 5 and was shown to involve $\eta^{5}-/ \eta^{3}-/ \eta^{5}$-migration of the allylbenzene fragment, with a free energy of activation of $62 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The complexes 2 and 3 reacted with HCl to give $\mathbf{1}$ and $\mathrm{RC}_{2} \mathrm{H}$. (C) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Rhodium complexes; μ-Methylene ligand; Carbon-carbon bond formation

1. Introduction

Bridging methylene groups in dinuclear complexes undergo facile coupling with hydrocarbyl ligands bound to the metal through both $s p^{2}$ and $s p$ carbons [1-5]. Knox et al. have investigated the coupling of one $\mu-\mathrm{CH}_{2}$ group on a diruthenium complex with acetylenes, which afforded a σ, π-allyl complex due to the formation of one $\mathrm{C}-\mathrm{C}$ bond [6]. We previously reported [7] that reaction of $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{Rh}\right)_{2}\left(\mu-\mathrm{CH}_{2}\right)_{2}(\mathrm{Cl})_{2}\right]$ (1) with $\mathrm{RC} \equiv \mathrm{CMgBr}$ gave the di- σ-alkynyl-di- μ-methylene-dirhodium complexes, $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{Rh}\right)_{2}\left(\mu-\mathrm{CH}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\right] \quad(\mathrm{R}=t-\mathrm{Bu} ; \mathrm{Ph})$. We now report that the reactions of $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{Rh}\right)_{2}(\mu\right.$ $\left.\left.\mathrm{CH}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\right]\left(2, \mathrm{R}=\mathrm{Ph}\right.$; and $\left.3, \mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ with acids can lead to interesting and unexpected coupling reactions.

[^0]
2. Results

Complexes 2 and 3 were synthesised as described previously [7] and were characterised spectroscopically $\left[{ }^{13} \mathrm{C}\right.$-NMR: α-ethynyl carbons, dd at $\delta 101.7$ (2) and $105.5(3) ;{ }^{1} J(\mathrm{C}-\mathrm{Rh})=68$ and $67 \mathrm{~Hz} ;{ }^{2} J(\mathrm{C}-\mathrm{Rh})=2.8$ and 2.3 Hz , respectively; β-ethynyl carbons, triplets at δ $86.0(2)$ and $99.2(3)\left({ }^{2} J(\mathrm{C}-\mathrm{Rh})={ }^{3} J(\mathrm{C}-\mathrm{Rh})=6.6\right.$ and 6.1 Hz , respectively]. These data are typical for rhodium σ-alkynyl complexes [8]. The structural proposals were reinforced by the presence of $v(\mathrm{C} \equiv \mathrm{C})$ absorptions in the IR spectra at 1963 (2) and 2098 (3) cm^{-1} [9].

Reaction of the arylethynyl complexes 2 or $\mathbf{3}$ with HCl in diethyl ether solution gave complex 1 and the free acetylene $\left(\mathrm{RC}_{2} \mathrm{H}\right)$ which was identified by GC-MS. However when $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mu-\mathrm{CH}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\right](2, \mathrm{R}=$ Ph ; or $3, \mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$) was treated with two equivalents of HBF_{4} in $\mathrm{Et}_{2} \mathrm{O}$ at ambient temperature, brown solids precipitated from the solution. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy showed these solids to be composed of a number of compounds; from which it was possible to isolate single products, $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mu-\eta^{5}, \eta^{5^{\prime}}-\left\{\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}-\right.\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right) \mathrm{CC}\left(\mathrm{CH}_{2}\right) \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{X}\right\}\right]\left[\mathrm{BF}_{4}\right]_{2} \quad(4, \mathrm{X}=\mathrm{H} ; \mathbf{5}, \mathrm{X}=$

$p-\mathrm{Me})$ as a $3: 1$ mixture of syn- and anti-isomers (Scheme 1).

Complexes 4 and 5 were fully characterised by spectroscopic and analytical methods and a single crystal X-ray diffraction study of $[\operatorname{syn}-\mathbf{5}]\left[\mathrm{BF}_{4}\right]_{2}$; the Xray study shows a dinuclear pentamethylcyclopentadienyl rhodium complex in which the rhodium centres are bridged by a ligand composed of two $\mathrm{C}-\mathrm{C}$ linked allylbenzenes (Fig. 1 and Table 1). The organic ligand is η^{5}-bonded approximately equivalently to five carbons ($\mathrm{C}(6), \mathrm{C}(11), \mathrm{C}(12), \mathrm{C}(13)$, and $\mathrm{C}(20))$ with $\mathrm{Rh}-\mathrm{C}$ bond lengths in the range $2.165(6)-2.470(6) \AA$; three of the carbons are somewhat closer to the rhodium ($\mathrm{C}(12$), 2.172(6); $\mathrm{C}(13), 2.194(6)$ and $\mathrm{C}(20), 2.165(7))$ than the other two, which are part of the benzene ring $(\mathrm{C}(6)$, $2.278(6)$ and $C(11), 2.470(6))$. Furthermore the length of the $\mathrm{C}(6)-\mathrm{C}(12)$ bond, linking the phenyl to the allyl, (1.463(9)) is similar to the others, $1.411(9)-1.433(9) \AA$. For the six-membered ring the $C(7)-C(8)$ and $C(9)-$

Table 1
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $[\operatorname{syn}-5]\left[\mathrm{BF}_{4}\right]_{2}$

Bond distances			
$\mathrm{Rh}(1)-\mathrm{C}(20)$	$2.165(7)$	$\mathrm{Rh}(1 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})$	$2.173(7)$
$\mathrm{Rh}(1)-\mathrm{C}(13)$	$2.194(6)$	$\mathrm{Rh}(1 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$2.174(6)$
$\mathrm{Rh}(1)-\mathrm{C}(12)$	$2.172(6)$	$\mathrm{Rh}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	$2.171(6)$
$\mathrm{Rh}(1)-\mathrm{C}(6)$	$2.278(6)$	$\mathrm{Rh}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	$2.269(6)$
$\mathrm{Rh}(1)-\mathrm{C}(11)$	$2.470(6)$	$\mathrm{Rh}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$2.448(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.424(9)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.370(10)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.426(11)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.340(11)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.420(10)$	$\mathrm{C}(6)-\mathrm{C}(11)$	$1.411(9)$
$\mathrm{C}(6)-\mathrm{C}(12)$	$1.463(9)$	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$1.425(9)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.419(9)$	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	$1.436(9)$
$\mathrm{C}(13)-\mathrm{C}(20)$	$1.433(9)$	$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$1.417(9)$
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})$	$1.434(9)$	$\mathrm{C}(13)-\mathrm{C}(13 \mathrm{~A})$	$1.513(10)$
Bond angles			
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{Rh}(1)$	$80.3(4)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Rh}(1)$	$120.4(5)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(20)$	$119.6(6)$	$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(12)$	$125.5(6)$
$\mathrm{C}(20)-\mathrm{C}(13)-\mathrm{C}(13 \mathrm{~A})$	$119.5(6)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(12)$	$115.8(6)$

$\mathrm{C}(10)$ are shorter, $1.370(10)$ and $1.340(11) \AA$, than the other $\mathrm{C}-\mathrm{C}$ bonds $1.411(9)-1.426(11) \AA$. The $\mathrm{Rh}-\mathrm{C}$ distances to the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring carbons range from 2.132(6) to $2.228(7) \AA$, and the perpendicular distance from the rhodium atom to the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring plane is $1.808 \AA$ and to the η^{5}-allylbenzene ligand is $1.703 \AA$; the angle between the planes defined by the $\mathrm{C}_{5} \mathrm{Me}_{5}$ and the allylbenzene ligand is 8.7°. The two halves of the cation are linked through $\mathrm{C}(13)-\mathrm{C}(13 \mathrm{~A})$, which, at $1.513(10) \AA$, is the value for a single bond between two $s p^{2}$ carbons [10]. The symmetry of the syn-cation is C_{2} and that of the anti-cation is C_{i}; the designations syn- and anti-refer to the orientations about the $C(13)-C(13 A)$ link, not to the relative positions of the Cp^{*} ligands.
The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra recorded at room temperature showed the complexes to be fluxional in solution. The nature of this process was examined by a $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ EXSY spectrum of $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}-$

Fig. 1. orter drawing of the cation of $[\operatorname{syn}-5]\left[\mathrm{BF}_{4}\right]_{2}$.

Fig. 2. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ EXSY spectrum of $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2^{-}}$ $\left.\mathrm{Rh}_{2}\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHC}\left(\mathrm{CH}_{2}\right)\right\}_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}(5)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-1.2{ }^{\circ} \mathrm{C}$, acquired using the Bruker programme, noesytp. The spectrum was acquired using a 8192×85 points data set and transformed into 16384×512 data points. The mixing delay is 0.03 s and the relaxation delay is 3 s .
$\left.\mathrm{Rh}_{2}\left\{\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CC}\left(\mathrm{CH}_{2}\right) \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{Me}\right\}\right]\left[\mathrm{BF}_{4}\right]_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-1.2{ }^{\circ} \mathrm{C}$ (Fig. 2). This spectrum, acquired using the Bruker program noesytp, shows that while the two ortho ($o-$ and $o^{\prime}-$) and the two meta (m - and $m^{\prime}-$) protons on each phenyl are distinct at low temperature, the signals undergo pair-wise exchange at higher temperature; this points to the fluxional process involving a rotation of the phenyl about the $\mathrm{C}(6)-\mathrm{C}(12)$-axis, for which we estimate $\Delta G^{\sharp}=62 \pm 1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This appears to be the first example of such a movement, and the activation energy for the dynamic process thus gives a measure of the barrier for an η^{5} to η^{3} shift. This process
involves going from an 18 - to a 16 -electron count at rhodium and is illustrated in Scheme 2. Related processes have been seen in $\mathrm{Cl}\left(\mathrm{PR}_{3}\right) \mathrm{Rh}\left(\eta^{4}-\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\right.$ O), $\left(\mathrm{PR}_{3}=\operatorname{PMe}\left({ }^{t} \mathrm{Bu}\right)_{2}\right)$ [11] where variable-temperature NMR studies show that the metal moves from the ketene C, O bond to the C, C bond and also coordinates weakly to two carbons of the ketene phenyl substituent. Similar processes have been characterised in palladium arene complexes [12].

3. Discussion

One surprising result from this work is that whereas HCl cleaves off the acetylene from 2 or $\mathbf{3}$, presumably by attack of the proton either at the metal or at the α alkynyl carbon, HBF_{4}, which has a non-coordinating anion, gives a more complex reaction leading to the formation of a dimer with a new $\mathrm{C}-\mathrm{C}$ bond.
A number of groups have reported that the protonation of σ-alkynyl complexes leads to vinylidenes [13]. Although no vinylidene intermediates were detected in the protonation of $\mathbf{2}$ and $\mathbf{3}$, even when the reaction was followed by NMR spectroscopy at low temperature in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution, we suggest that in the reaction of $\mathbf{3}$ to give 5 (or $\mathbf{2}$ to give 4), the first step involves protonation at the β-alkynyl carbon (giving (A)) followed by carbon-carbon bond formation between the α-alkynyl carbons and the $\mu-\mathrm{CH}_{2}$ in the dirhodium complex (Scheme 3). The reaction sequence is concluded by reductive elimination to give the carbon-carbon bond $(\mathrm{C}(13)-\mathrm{C}(13 \mathrm{~A})$ linking the two halves together, and a low valent Rh species.
It may also be noted that the formal oxidation state of each Rh in $\mathbf{5}$ or $\mathbf{6}$ is + III, and therefore during the reaction of $\mathbf{2}$ or $\mathbf{3}$ with acid there has been a net

Scheme 2. $\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$.

Scheme 3. $4(X=H) ; 5(X=M e) ; C p^{*}=\eta^{5}-C_{5} M e_{5}$.
reduction of each Rh from IV to III, coincident with the formation of the $C(13)-C(13 A)$ single bond.

Another complex in which two acetylenes and two $\mu-$ methylenes couple is derived from $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{Rh}\right)_{2}(\mu\right.$ $\left.\left.\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]^{2+}\left[\mathrm{PF}_{6}^{-}\right]_{2}$ and monosubstituted alkynes ($\mathrm{R}^{\prime} \mathrm{C} \equiv \mathrm{CH}$). The C_{6} skeleton of the coupled product was first formulated as $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{Rh}\right)_{2}(\mu\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{CHCR}^{\prime} \mathrm{CHCR}^{\prime} \mathrm{CH}\right)\right]^{+}\left(\mathrm{R}^{\prime}=\right.$ aryl) on the basis of the NMR spectra [7]. In a later study Kaneko et al. [14] reported the crystallisation and the X-ray structure of the coupling product from a cleaner reaction system, using the BF_{4}^{-}or $\mathrm{OTf}^{-}(\mathrm{Tf}=$ trifluoromethanesulfonyl $)$ salts, and showed that the C_{6} skeleton was better represented as $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{Rh}\right)_{2}\left(\eta^{1}: \eta^{4}: \eta^{2}-\mu-\mathrm{CHC}(\mathrm{Ph}) \mathrm{CHC}-\right.\right.$ $\left.\left.(\mathrm{Ph}) \mathrm{CHCH}_{2}\right)\right]^{+}(\mathbf{6})$, shown in Scheme 4.

Thus in the formation of $\mathbf{5}$ and of $\mathbf{6}$ two arylacetylenes and two methylenes couple. However, whereas in the formation of $\mathbf{5}$ it appears that one acetylene and one

Scheme 4.
methylene couple first before joining the two C_{3} units together, the formation of $\mathbf{6}$ is more easily explained if the two acetylenes couple with each other either before or after the methylenes couple together, and the reaction ends by the joining of the C_{4} and the C_{2} fragments.

4. Experimental

All reactions were carried out under nitrogen using carefully dried and purified solvents. Ethynylmagnesium chloride, 4-ethynyltoluene, HBF_{4} and $\mathrm{HCl}(1 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) were obtained from Aldrich. $\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C}_{2}\right) \mathrm{MgCl}$ was made by reaction of isopropylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}$ and 4-ethynyltoluene in tetrahydrofuran. trans $-\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mu-\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{2}\right] \quad$ (1) and $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mu-\mathrm{CH}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\right]\left(\mathrm{R}=t-\mathrm{Bu}, \mathbf{3} ; \mathrm{C}_{6} \mathrm{H}_{5}\right.$, 2) complexes, were prepared by the literature procedures [17,7]. NMR spectra were recorded on Bruker AM-250 and WH-400 spectrometers; microanalytical data were obtained by the University of Sheffield Microanalytical Service. FAB mass spectra were recorded on a Micromass Prospec using nitrobenzyl alcohol as the matrix. Infrared spectra were measured on Nicolet Magna-IR 560 E.S.P. spectrometer. Free alkynes were identified using a Hewlett Packard 5890-5971A GC-MS instrument.
4.1. Preparation of trans $-\left[\left(C_{5} \mathrm{Me}_{5}\right)_{2} R h_{2}(\mu\right.$ -
$\left.\left.\mathrm{CH}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\right]\left(\mathrm{R}=\mathrm{H}, 2 ; \mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}, 3\right)$
A solution of 4-tolylethynylmagnesium chloride (6.25 $\mathrm{ml}, 2 \mathrm{mmol}$) was added to complex $1(200 \mathrm{mg}, 0.35$ mmol) in toluene (20 ml). On workup this gave complex 3 as an orange solid ($0.21 \mathrm{~g}, 82 \%$). Anal. Calc. for $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{Rh}_{2}$: C, 65.4; H, 6.6. Found: C, 65.9 ; H, 6.7%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, v(\mathrm{C} \equiv \mathrm{C})\right): 2098 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $9.14\left(\mathrm{~s}, 2 \mathrm{H}, \mu-\mathrm{CH}_{2}\right), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 164.4\left(\mathrm{t}, J_{\mathrm{Rh}-\mathrm{C}}=24 \mathrm{~Hz}, \mu-\mathrm{CH}_{2}\right), 133.8$, $130.9,128.5,126.2\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 105.5\left(\mathrm{dd}, J_{\mathrm{Rh}-\mathrm{C}}=67\right.$, $2.3 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{C} \equiv), 103.1\left(\mathrm{~s}, \underline{\mathrm{C}}_{5} \mathrm{Me}_{5}\right), 99.2\left(\mathrm{t}, J_{\mathrm{Rh}-\mathrm{C}}=6.1\right.$ $\left.\mathrm{Hz}, \equiv \underline{\mathrm{C}}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 21.2(\mathrm{~s}, \mathrm{Me}), 10\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$. Complex 2 was prepared similarly [7].
4.2. Preparation of syn- and anti- $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2} \mu-\right.$ $\left.\eta^{5}, \eta^{5^{\prime}}-\left\{\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CC}\left(\mathrm{CH}_{2}\right) \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{X}\right\}\right][\mathrm{BF} 4]_{2}$ ($X=H, 4 ; M e, 5$)
$\mathrm{HBF}_{4} \cdot \mathrm{OMe}_{2}(0.017 \mathrm{ml}, 0.14 \mathrm{mmol})$ was added to a solution of $2(50 \mathrm{mg}, 0.07 \mathrm{mmol})$ in diethyl ether $(30 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$. In a few minutes a brown solid precipitated and after stirring the reaction for 2 h the solution was filtered. The resulting solid was repeatedly washed with acetone (1 ml) to give a red solid which was identified as a $3: 1$ mixture of syn- and anti- $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCCH}_{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (4), (0.025 g, 40\%). Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Rh}_{2}$: C, 51.2; H, 5.2. Found: C, 51.7; H, 5.3%. MS-FAB ${ }^{+} m / z: 795\left[\mathrm{M}-\left(\mathrm{BF}_{4}\right)\right]^{+}, 708[\mathrm{M}-$ $\left.\left(\mathrm{BF}_{4}\right)_{2}\right]^{+}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, v\left(\mathrm{BF}_{4}\right)\right): 1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.30$ (br, 1 H), 7.8 (br, $2 \mathrm{H}), 7.8(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{br}, 1 \mathrm{H}), 5.42(\mathrm{br}, 1 \mathrm{H}), 4.00(\mathrm{~d}$, $\left.J_{\mathrm{H}-\mathrm{H}}=3.22 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.36\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=3.22 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.54$ $(\mathrm{s}, 15 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 233 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: syn-4, δ $8.15(\mathrm{~m}, 1 \mathrm{H}), 7.75\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.74(\mathrm{~d}$, $\left.J_{\mathrm{H}-\mathrm{H}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 5.32(1 \mathrm{H}$, partially obscured by deuterated solvent), 3.90 (d, $\left.J_{\mathrm{H}-\mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.21\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.47$ (s, 15H); anti-4, $\delta 7.95(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~d}, 1 \mathrm{H}), 4.67(\mathrm{~d}$, $1 \mathrm{H}), 2.20(\mathrm{~d}$, partially obscured, 1 H$), 1.47(\mathrm{~s}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 132.1\left(\mathrm{br},-{ }_{6} \mathrm{H}_{4}\right)$, 131.1 (s, C-Me), 109.1 (d, $J_{\mathrm{Rh}-\mathrm{C}}=4.8 \mathrm{~Hz}$, Cipso), 107.7 $\left(\mathrm{d}, J_{\mathrm{Rh}-\mathrm{C}}=5.6 \mathrm{~Hz}\right.$, Cipso), $101.7\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=7.2\right.$, $\underline{C}_{5} \mathrm{Me}_{5}$), 94.6 (br, Car), 90.3 (d, $\left.J_{\mathrm{Rh}-\mathrm{C}}=4.8 \mathrm{~Hz}, \underline{\mathrm{CH}}\right)$, $58.4\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 8.9\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$.

An analogous reaction was carried out using a solution of $3(50 \mathrm{mg}, 0.068 \mathrm{mmol})$ and $\mathrm{HBF}_{4} \cdot \mathrm{OMe}_{2}$ ($0.016 \mathrm{ml}, 0.136 \mathrm{mmol}$) and stirring for 12 h . This gave the complex 5 as a red solid ($0.025 \mathrm{~g}, 40 \%$). Anal. Calc. for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Rh}_{2}$: C, 52.4; H, 5.5. Found: C, $52.8 ; \mathrm{H}$, 5.5%. $\mathrm{MS}-\mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}: 823\left[\mathrm{M}-\left(\mathrm{BF}_{4}\right)\right]^{+}, 736[\mathrm{M}-$ $\left.\left(\mathrm{BF}_{4}\right)_{2}\right]^{+}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, v\left(\mathrm{BF}_{4}\right)\right): 1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 5, $\delta 8.19$ (br, 1 H), 7.73 (s, $1 \mathrm{H}), 7.63(\mathrm{br}, 1 \mathrm{H}), 7.07(\mathrm{br}, 1 \mathrm{H}), 5.42(\mathrm{br}, 1 \mathrm{H}), 3.90(\mathrm{~d}$,
$\left.J_{\mathrm{H}-\mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.28\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=3.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 1.52(\mathrm{~s}, 15 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, 233 \mathrm{~K}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): syn-5, $\delta 8.04\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60(\mathrm{~s}$, $1 \mathrm{H}), 7.60\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.30\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=0.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=\right.$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.12\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.45(\mathrm{~s}, 15 \mathrm{H})$. anti-5, $\delta 7.83\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.57$ (d, partially obscured, 1 H$), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}$, partially obscured, 1 H$), 5.44\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.57\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}$, partially obscured, 1 H), 1.47 (s, 15H). ${ }^{13} \mathrm{C}$-NMR (400 $\mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 5, $\delta 142.9$ (s, Cipso), 134.7, 132.6, 129.4, $96.6\left(\mathrm{br},-\underline{\mathrm{C}}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 106.9\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=5.3\right.$ $\mathrm{Hz}), 106.3\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=4.6 \mathrm{~Hz}\right), 101.6\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=6.8\right.$ $\mathrm{Hz}), 90.1\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=5.3 \mathrm{~Hz}, \mathrm{CH}\right), 57.8\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=13\right.$ $\mathrm{Hz}, \mathrm{CH}_{2}$), 22.1 (s, Me), 8.9 (s, $\mathrm{C}_{5} \mathrm{Me}_{5}$). ${ }^{13} \mathrm{C}$-NMR (400 $\mathrm{MHz}, 223 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): syn-5, $\delta 141.9$ (s, C-Me), 134.1 (s, CHar), 131.1, (s, CHar), 128.8, (s, CHar), 105.8 (d, $J_{\mathrm{Rh}-\mathrm{C}}=4.6 \mathrm{~Hz}$, Cipso), $105.6\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=3.8 \mathrm{~Hz}\right.$, Cipso), 100.7 (d, $J_{\mathrm{Rh}-\mathrm{C}}=6.8 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{Me}_{5}$), 93.7 (s , CHar), $89.3\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=3.8 \mathrm{HzCH}\right), 57.1\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=\right.$ $13 \mathrm{~Hz}, \mathrm{CH}_{2}$), 21.8 (s, Me), 8.5 ($\mathrm{s}, \mathrm{C}_{5} \mathrm{Me}_{5}$).

4.3. X-ray structure determination

Crystal data for $\mathrm{C}_{41} \mathrm{H}_{22} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{Rh}_{2}$, syn-5 are summarised in Table 2 and selected bond lengths and angle data are given in Table 1. syn-5 crystallises from diffusion of pentane into dichloromethane solution as red blocks. Data collected were measured on a Bruker Smart CCD area detector with Oxford Cryosystems low temperature system. Reflections were measured from a hemisphere of data collected of frames each covering 0.3° in omega. Of the reflections measured, all of which were corrected for Lorentz and polarisation effects and for absorption by semi-empirical methods based on symmetry-equivalent and repeated reflections 6453 independent reflections exceeded the significance level $|F| /$ $\sigma(|F|)>4.0$. The structures were solved by direct methods and refined by full-matrix least-squares methods on F^{2} with anisotropic thermal parameters for nonhydrogen atoms. Hydrogen atoms were placed geometrically and refined with a riding model (including torsional freedom for methyl groups) and with $U_{\text {iso }}$ constrained to be 1.2 (1.5 for methyl groups) times $U_{\text {eq }}$ of the carrier atom. A weighting scheme $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+\right.$ $\left.(0.0915 P)^{2}+6.06 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$ was used in the latter stages of refinement. Complex scattering factors were taken from the program package shelxtl [15] as implemented on the Viglen Pentium computer.

4.4. Reaction of $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right){ }_{2} R h_{2}(\mu\right.$ -
 $\left.\mathrm{CH}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}$] (3) with HCl

A solution of $\mathrm{HCl}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O} ; 0.14 \mathrm{ml}, 0.14 \mathrm{mmol}\right)$ was added to a stirred solution of $\mathbf{3}(50 \mathrm{mg}, 0.068 \mathrm{mmol})$

Table 2
Crystallographic data for [syn-5][$\left.\mathrm{BF}_{4}\right]_{2}$

Empirical formula	$\mathrm{C}_{41} \mathrm{H}_{22} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{Rh}_{2}$
Formula weight	964.93
Temperature (K)	150(2) K
Wavelength (\AA)	0.71073
Crystal system	Monoclinic
Space group	$P 21 / n$
Unit cell dimensions	
$a(\AA)$	8.2719(12)
$b(\AA)$	15.461(2)
$c(\AA)$	32.998(5)
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	95.862(3)
$\gamma\left({ }^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	4198.0(10)
Z	4
$D_{\text {calc }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.527
Absorption coefficient (mm^{-1})	0.976
$F(000)$	1896
Crystal size (mm)	$0.41 \times 0.41 \times 0.08$
Theta range for data collection	1.24-28.33
$\left({ }^{\circ}\right.$)	
Index ranges	$\begin{aligned} & -9 \leq h \leq 10,-13 \leq k \leq 20 \\ & -43 \leq l \leq 43 \end{aligned}$
Reflections collected	25336
Independent reflections	$10105\left[R_{\text {int }}=0.1658\right]$
Completeness to theta $=28.33^{\circ}$	96.6\%
Absorption correction	Semi-empirical
Max/min transmission	$0.9260,0.6903$
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	10 105/32/537
Goodness-of-fit on F^{2}	1.015
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0711, w R_{2}=0.1639$
R indices (all data)	$R_{1}=0.1188, w R_{2}=0.1816$
Largest difference peak and hole (e \AA^{-3})	1.031 and -1.079

in diethyl ether (20 ml). The colour changed from orange to red and after 1 h the solvent from the suspension was removed and the residue washed with n-pentane ($2 \times 5 \mathrm{ml}$) to give $\mathbf{1}(0.035 \mathrm{~g}, 90 \%)$. GC-MS analysis of the ether solution showed the presence of p $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C}_{2} \mathrm{H}$.

Acknowledgements

This research has been supported by a Marie Curie Fellowship of the European Community programme under contract number HPMF-CT-2000-00982.

References

[1] (a) J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, CA, USA, 1987, p. 332;
(b) W.A. Herrmann, Adv. Organomet. Chem. 20 (1982) 159.
[2] P.M. Maitlis, J. Organomet. Chem. 500 (1995) 240.
[3] (a) C.P. Casey, P.F. Fagan, W.H. Miles, J. Am. Chem. Soc. 104 (1982) 1134;
(b) C.P. Casey, M.W. Meszaros, P.J. Fagan, R.K. Bly, S.R. Marder, E.A. Autin, J. Am. Chem. Soc. 108 (1986) 4043;
(c) C.P. Casey, M.W. Meszaros, S.R. Marder, R.K. Bly, P.J. Fagan, Organometallics 5 (1986) 1873;
(d) C.P. Casey, L.K. Woo, P.J. Fagan, R.E. Palermo, B.R. Adams, Organometallics 6 (1987) 447;
(e) C.P. Casey, E.A. Austin, A.L. Rheingold, Organometallics 6 (1987) 2157;
(f) C.P. Casey, M. Crocker, P.C. Vosejpka, P.J. Fagan, S.R. Marder, M.A. Gohdes, Organometallics 7 (1988) 670;
(g) C.P. Casey, P.C. Vosejpka, M. Crocker, J. Organomet. Chem. 394 (1990) 339.
[4] N.G. Connelly, N.J. Forrow, B.P. Gracey, S.A.R. Knox, A.G. Orpen, J. Chem. Soc. Chem. Commun. (1985) 14.
[5] (a) Y. Kaneko, T. Suzuki, K. Isobe, Organometallics 17 (1998) 996;
(b) Y. Kaneko, N. Suzuki, A. Nishiyama, T. Suzuki, K. Isobe, Organometallics 17 (1998) 4875.
[6] (a) A.F. Dyke, S.A.R. Knox, P.J. Naish, G.E. Taylor, J. Chem. Soc. Chem. Commun. (1980) 803;
(b) P.Q. Adams, D.L. Davis, A.F. Dyke, S.A.R. Knox, K.A. Mead, P. Woodward, J. Chem. Soc. Chem. Commun. (1983) 222;
(c) D.L. Davis, S.A.R. Knox, K.A. Mead, M.J. Morris, P. Woodward, J. Chem. Soc. Dalton Trans. (1984) 2293;
(d) S.A.R. Knox, J. Organomet. Chem. 400 (1990) 255;
(e) S.A.R. Knox, J. Cluster Sci. 3 (1992) 385;
(f) M. Akita, R. Hua, S. Nakanishi, M. Tanaka, Y. Moro-oka, Organometallics 16 (1997) 5572.
[7] N.J. Meanwell, A.J. Smith, P.M. Maitlis, J. Chem. Soc. Dalton Trans. (1986) 1419.
[8] B.E. Mann, B.F. Taylor, ${ }^{13}$ C NMR Data for Organometallic Compounds, Academic Press, London, 1981, p. 103.
[9] J. Manna, K.D. John, M.D. Hopkins, Adv. Organomet. Chem. 38 (1995) 79.
[10] M.B. Smith, J. March, March's Advanced Organic Chemistry, Wiley, New York, 2001, p. 19.
[11] D.B. Grotjahn, G.A. Bikzhanova, Organometallics 18 (1999) 5614.
[12] (a) C.-S. Li, C.-H. Jou, D.-C. Jou, Organometallics 12 (1993) 3945;
(b) C.-S. Li, C.-H. Cheng, F.-L. Liao, S.-L. Wang, J. Chem. Soc. Chem. Commun. (1991) 710.
[13] M.I. Bruce, A.G. Swincer, Adv.Organomet. Chem. 22 (1983) 59.
[14] Y. Kaneko, T. Suzuki, K. Isobe, P.M. Maitlis, J. Organomet. Chem. 554 (1998) 155.
[15] shelxtl version, An Integrated System for Solving and Refining Crystal Structures from Diffraction Data (Revision 5.1), Bruker AXS LTD.

[^0]: * Corresponding authors. Tel.: +44-114-222-9320; fax: +44-114-273-8673

 E-mail address: p.maitlis@sheffield.ac.uk (P.M. Maitlis).

